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Today’s topic

Improve complexity of deciding stuttering bisimulation equivalence

O(m · n) −→ O(m · log n)
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Kripke structure

〈S, AP,→, L〉 where:
É S set of states
É →⊆ S × S
É L : S→ 2AP

We let n= |S|, m= | → |.

s0 c1

{hacking}
c2

{eating pizza}

t0t1
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Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of a KS 〈S, AP,→, L〉
such that when s R t:

L(s) = L(t), and
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States s, t are bisimilar (s - t) iff s R t for some bisimulation R
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Why strong bisimulation?
É Preserves behaviour
É Allows finding equivalent (simpler) KS
É Preserves truth value of all logical formulas in LTL, CTL, . . .

Applications:
É Check implementation conforms to specification
É Interchange specification and implementation of component when reasoning

about system
É Reduce model before doing expensive operation (e.g. model checking)
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Some terminology
É Equivalence relation (such as strong bisimulation) partitions set of states . . .
É . . . into disjoint subsets: equivalence classes
É Partition is a cover of S with disjoint subsets
É Disjoint subsets constituting partition are called blocks
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Strong bisimulation
Example
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How to compute strong bisimulation?
Partition refinement:
É General technique to approximate equivalence relations from above
É Idea:

É Start with coarse initial partition

states with same label are equivalent strong bisimulation condition 1 Ø

É Refine blocks until all conditions on equivalence satisfied

if s→ s′ and s R t then ∃t ′ t → t ′ . . .

Split the blocks into:

split(RfnB,SpC ) = {s ∈ RfnB | ∃s′∈S s′ ∈ SpC}
cosplit(RfnB,SpC ) = RfnB \ split(RfnB,SpC )
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Simple algorithm for strong bisimulation
É Start with coarse initial partition:

states with same label are equivalent strong bisimulation condition 1 Ø
É Is condition 2 satisfied?

if s→ s′ and s R t then ∃t ′ t → t ′ . . .
É If not, block of s′ is a splitter. Split between s and t

Split the blocks into:

split(RfnB,SpC ) = {s ∈ RfnB | ∃s′∈S s′ ∈ SpC}
cosplit(RfnB,SpC ) = RfnB \ split(RfnB,SpC )

Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes,
and three problems of equivalence. Information and Computation. 86, 43–68 (1990).
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Algorithm for strong bisimulation
Kanellakis & Smolka

P ← initial partition in which states with same label are equivalent
while P is unstable under some block SpB ∈ P do
In P, replace all predecessors of RfnB with two blocks split(RfnB, SpB) and
cosplit(RfnB, SpB)

end while

11 / 30



Algorithm for strong bisimulation
Kanellakis & Smolka, with some detail

P ← initial partition in which states with same label are equivalent
while P is unstable do

for SpB ∈ P do {Find a splitter}
Mark all predecessors of states in SpB
if Some predecessor of SpB is in block which is not marked completely
then {SpB is a splitter}

for Each marked predecessor block RfnB of SpB do
In P, replace RfnB with two blocks split(RfnB, SpB) and
cosplit(RfnB, SpB)

end for
end if

end for
end while

12 / 30



Naive algorithm for strong bisimulation
Complexity

É Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(n)
É Number of splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(n)

partitions with 1 state cannot be split
É Finding a splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(m)

every incoming transition traversed at most once
É Splitting w.r.t. a block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(m)

change blocks and update bookkeeping

Total running time: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(mn)
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Efficient refinement step for strong bisimulation
É Maintain coarse partition C of constellations

É to store which potential splitters have been checked
É Constellations are unions of blocks
É Constellation in C is trivial if it corresponds with a single block in P

Maintain the following invariant
É P is stable w.r.t. each constellation in C

Principle
É Process the smaller half (idea from Hopcroft, later Paige & Tarjan)

Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms
SIAM Journal on Computing. 16, 973–989 (1987).

14 / 30



Efficient refinement step for strong bisimulation
. . .
while C contains a non-trivial constellation SpC do
Choose a small splitter block SpB ⊂ SpC {|SpB| ≤ |SpC/2|}
In C, replace SpC with NewC = SpB and SpC \NewC
. . .

end while
. . .

SpB

SpC

SpB

SpC \NewC

NewC
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Efficient refinement step for strong bisimulation
Algorithm

. . .
Mark all predecessors of states in SpB
for each marked predecessor block RfnB of SpB do

B1← split(RfnB, SpB)
B2← cosplit(RfnB, SpB) {Stable w.r.t. SpC \NewC} . . .

end for

SpB

SpC \NewC

NewC
m

m

RfnB

SpB

SpC \NewC

NewC
m

m

B1

B2
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Efficient refinement step for strong bisimulation
Algorithm

. . .
B1,1← split(B,SpC \NewC )
B1,2← cosplit(B,SpC \NewC )
In P, replace RfnB with three blocks: B1,1, B1,2, B2 . . .

SpB

SpC \NewC

NewC
m

m

B1

SpB

SpC \NewC

NewC
m

m

B1,1

B1,2
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Efficient refinement step for strong bisimulation
Algorithm (Paige & Tarjan)

P ← initial partition in which states with same label are equivalent
C← {S}
while C contains a non-trivial constellation SpC do
Choose a small splitter block SpB ⊂ SpC {|SpB| ≤ |SpC/2|}
In C, replace SpC with NewC = SpB and SpC \NewC
Mark all predecessors of states in SpB
for each marked predecessor block RfnB of SpB do

B1← split(RfnB, SpB)
B2← cosplit(RfnB, SpB) {Stable w.r.t. SpC \NewC}
B1,1← split(B,SpC \NewC )
B1,2← cosplit(B,SpC \NewC )
In P, replace RfnB with three blocks: B1,1, B1,2, B2

end for
end while18 / 30



Time complexity
É State is in a splitter at most blog2 nc times
É Every time s is selected, we do at most O(|in(s)|) work
É Time complexity:

∑

s∈S O(|in(s)|)blog2 nc) = O(m log n)
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Stuttering bisimulation

A divergence blind stuttering bisimulation is a relation R ⊆ S × S so that when
s R t:

L(s) = L(t), and
s
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R+ symmetric cases

s, t are divergence blind stuttering bisimilar (s -b t)
iff s R t for some divergence blind stuttering bisimulation R
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Why stuttering bisimulation?
É Better reduction than strong bisimulation
É Preserves temporal logics without next-state operator, e.g. LTL\X
É Balance between reduction and algorithmic complexity
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Simple algorithm for stuttering bisimulation
Idea: use algorithm for strong bisimulation, but:

split(RfnB,SpC ) = {s ∈ RfnB | ∃k∈N,s0,...,sk∈S s = s0

∧∀i<k si → si+1 ∧ si ∈ RfnB∧ sk ∈ SpC}
cosplit(RfnB,SpC ) = RfnB \ split(RfnB,SpC )

22 / 30



Refinement for stuttering bisimulation
. . .
Mark all predecessors of states in SpB
Extend marking through inert transitions in SpB
for each marked predecessor block RfnB of SpB do

B1← marked states in RfnB
B2← unmarked states in RfnB. . .

end for

SpB

SpC

m

m

RfnB

SpB

SpC \NewC

NewC
m

m

B1

B2
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Problems with simple algorithm
É Extending marking is inefficient: we visit more than just the marked states,

so time complexity of O(in(SpB) not met.
Solution: Process the smaller half, again, by balancing search for blue/red
states

É Invariant not automatically reestablished after splitting.

C
RfnB

BlueBRedBSpB

Solution: Perform additional splits to reestablish invariant
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Efficient algorithm
Complete pseudocode An O (m logn) Algorithm for Computing Stuttering Equivalence A:11

Algorithm 2 Main loop of partition refinement for divergence-blind stuttering equivalence
2.1 function DBSTUTTERINGEQUIVALENCE(S,AP,!,L)

{Find the divergence-blind stuttering equivalence classes for Kripke structure (S,AP,!,L) with
n 2O (m).}

2.2 P :=P0, i. e. the initial, cycle-free partition; C := {S}
O (m logn)

2.3 Initialise all temporary data
∑ n iterations2.4 while C contains a non-trivial constellation SpC do

2.5 Choose a small splitter block SpBΩSpC from P , i. e. |SpB| ∑ 1
2 |SpC|

O (1)
2.6 Create a new constellation NewC and move SpB from SpC to NewC
2.7 C := partition C where SpB is removed from SpC and NewC is added
2.8 Mark block SpB as refinable
2.9 Mark all states of SpB as predecessors

O

µ |in(SpB)|+
|out(SpB)|

∂

2.10 for all s 2SpB do {Find predecessors of SpB}
2.11 for all s0 2 in(s)\SpB do
2.12 Mark the block of s0 as refinable
2.13 Mark s0 as predecessor of SpB
2.14 Register that s0 ! s goes to NewC (instead of SpC)
2.15 Store whether s0 still has some transition to SpC\SpB
2.16 end for
2.17 Register that inert transitions from s go to NewC (instead of SpC)
2.18 Store whether s still has some transition to SpC\SpB
2.19 end for

∑ |in(SpB)| iterations2.20 for all refinable blocks RfnB do {Stabilise the partition again}
2.21 Mark block RfnB as non-refinable O (1)
2.22 hRedB,BlueBi := REFINE(RfnB,NewC, {marked states 2RfnB},;)
2.23 if RedB contains new bottom states then
2.24 RedB := POSTPROCESSNEWBOTTOM(RedB,BlueB)
2.25 end if
2.26 hRedB,BlueBi := REFINE(RedB,SpC\SpB,;, {transitions RedB!

SpC\SpB})
2.27 if RedB contains new bottom states then
2.28 POSTPROCESSNEWBOTTOM(RedB,BlueB)
2.29 end if
2.30 Unmark all states of the original RfnB as predecessors O (1)
2.31 end for
2.32 end while
2.33 return P

SpC\SpB

NewC

B1 B2 B3 B4 B5

B6
B7 B8

SpB

Fig. 2: DBSTUTTERINGEQUIVALENCE marks predecessor states and blocks

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.
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Efficient algorithm
Complete pseudocode A:14 J. F. Groote, D. N. Jansen, J. J. A. Keiren, and A. J. Wijs

Algorithm 3 Refine a block under SpC
3.1 function REFINE(RfnB,SpC,Red,FromRed)

{Try to refine block RfnB, depending on whether states have (weak) transitions to the splitter con-
stellation SpC. States in Red are known to have such a transition; alternatively, FromRed contains
all strong transitions from RfnB to SpC. If FromRed 6= ;, then bottom states that are not in Red
can be tested quickly whether they have such a transition.}

3.2 if RfnBµSpC then return hRfnB,;i
3.3 Test := {bottom states}\Red, Blue :=;
3.4 begin {Spend the same amount of work on either coroutine:}
3.5 whenever |Blue| > 1

2 |RfnB| then
Abort this coroutine

3.6 while Test 6= ;^FromRed 6= ; do
3.7 Choose s 2Test
3.8 if s !SpC then
3.9 Move s from Test to Red

3.10 else
3.11 Move s from Test to Blue
3.12 end if
3.13 end while
3.14 Blue :=Blue[Test
3.15 while Blue contains

unvisited states do
3.16 Choose an unvisited s 2Blue
3.17 Mark s as visited
3.18 for all s0 2 inø(s)\Red do
3.19 if notblue(s0) undefined then
3.20 notblue(s0) := |outø(s0)|
3.21 end if
3.22 notblue(s0) := notblue(s0)°1
3.23 if notblue(s0) = 0^ (FromRed =

;_ s0 6!SpC) then
3.24 Blue :=Blue[ {s0}
3.25 end if
3.26 end for
3.27 end while
3.28 Abort the other coroutine
3.29 Move Blue to a new block NewB
3.30 Destroy all temporary data
3.31 for all s 2NewB do
3.32 for all s0 2 inø(s)\NewB do
3.33 s0 ! s is no longer inert
3.34 if |outø(s0)| = 0 then
3.35 s0 is a new bottom state
3.36 end if
3.37 end for
3.38 end for
3.39 RedB :=RfnB, BlueB :=NewB

whenever |Red| > 1
2 |RfnB| then

O (1)

Abort this coroutine
while FromRed 6= ; do

O (1) per assignment
to Blue or Red, resp.

Choose s ! t 2FromRed

O (|Test|)
and
O (|FromRed|)

Test :=Test\{s}
Red :=Red[ {s}
FromRed :=FromRed\{s ! t}

end while

while Red contains
unvisited states do

Choose an unvisited s 2Red

O

0
B@

|in(NewB)| +
|out(NewB)| +
|out(NewBott)|

1
CA

and
O (|in(NewB)|)

Mark s as visited
for all s0 2 inø(s) do

Red :=Red[ {s0}

end for
end while
Abort the other coroutine

O (|out(NewB)|)Move Red to a new block NewB
Destroy all temporary data as lines 3.6–3.27
for all non-bottom s 2NewB do

O (|in(NewB)|)
or
O (|out(NewB)|)

for all s0 2 outø(s)\NewB do
s ! s0 is no longer inert

end for
if |outø(s)| = 0 then

s is a new bottom state
end if

end for

O (1)RedB :=NewB, BlueB :=RfnB
3.40 end
3.41 P := partition P where NewB is added and the states in NewB are removed from RfnB
3.42 return hRedB,BlueBi (with old and new bottom states separated)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.
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Efficient algorithm
Complete pseudocode A:18 J. F. Groote, D. N. Jansen, J. J. A. Keiren, and A. J. Wijs

Algorithm 4 Refine as required by new bottom states, called in lines 2.24 and 2.28
4.1 function POSTPROCESSNEWBOTTOM(RedB,BlueB)

{Stabilise the partition for all new bottom states in RedB.}
4.2 Create an empty search tree R of constellations O (1)
4.3 hResultB,RfnBi := REFINE(RedB,cosplit(RedB,BlueB), {old bottom states

2RedB},;)
∑ |out(NewBott)| iter’ns4.4 for all constellations C 62R reachable from RfnB do

4.5 Add C to R O (logn)
4.6 Register that the transitions RfnB!C need postprocessing O (1)
4.7 end for
4.8 for all bottom states s 2RfnB do
4.9 Set the current constellation pointer of s to the first constellation it

can reach O (|NewBott|)
4.10 end for

∑ |out(NewBott)| iter’ns4.11 for all constellations SpC 2R (in order) do
4.12 for all blocks B̂ with transitions to SpC that need postprocessing do
4.13 Delete B̂ !SpC from the transitions that need postprocessing O (1)
4.14 hRedB,BlueBi := REFINE(B̂,SpC,;, {transitions B̂ !SpC})
4.15 for all old bottom states s 2RedB do
4.16 Advance the current constellation pointer of s to the next con-

stellation it can reach O (|out(NewBott)\SpC|)
4.17 end for
4.18 if RedB contains new bottom states then
4.19 h_,RfnBi := REFINE(RedB, cosplit(RedB,BlueB), {old bottom

states 2RedB},;)
4.20 Register that the transitions RfnB!SpC need postprocessing O (1)
4.21 Restart the procedure (but keep R), i. e. go to line 4.4
4.22 end if
4.23 end for
4.24 Delete SpC from R O (logn)
4.25 end for
4.26 Destroy all temporary data
4.27 return ResultB

cosplit(split(RedB,BlueB),cosplit(RedB,BlueB)). Furthermore, this call will not find any new
bottom states.

PROOF. It already has been argued that all new bottom states in RedB are in SRedB :=
split(RedB,BlueB) and all old bottom states are in CRedB := cosplit(RedB,BlueB). Some pre-
decessors of old bottom states also end up in CRedB. Therefore, CRedB is a subset of the red
subblock resulting from the refinement in line 4.3.

Among the states in SRedB, those that can reach some old bottom state through transi-
tions that are inert in RedB can also reach some state in CRedB. Therefore, the red subblock
resulting from the refinement also contains split(SRedB,CRedB).

We still have to show that there are not more states in the red subblock. The blue subblock
resulting from the refinement contains all new bottom states, and whatever the splitter, it
must also contain all non-bottom states without an inert path to old bottom states. These are
the states in cosplit(SRedB,CRedB).

It remains to be shown that this call to REFINE does not find additional new bottom states.
This holds because all red non-bottom states have an inert transition to some red bottom
state; this transition will remain inert.

It should be noted that splitting RedB into SRedB and CRedB could introduce new bottom
states that have a direct transition to BlueB and a transition to some state in CRedB. Because
of the latter transition, these were not bottom states in RedB before the splitting. However,
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Experimental results
Special case

(a ·τ)size
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Experimental results

original minimised running time (in s)
Model n m n m GV BO GJKW
vasy_69_520 69,754 520,633 69,753 520,632 1.20 5.00 1.40
vasy_66_1302 66,929 1,302,664 51,128 1,018,692 2.20 9.00 3.00
vasy_4338_15666 4,338,672 15,666,588 704,737 3,972,600 1,800.00 300.00 41.00
vasy_11026_24660 11,026,932 24,660,513 775,618 2,454,834 1,900.00 1,300.00 68.00
lift6-final 6,047,527 26,539,368 1,699 9,870 59.00 270.00 51.00
vasy_12323_27667 12,323,703 27,667,803 876,944 2,780,022 2,500.00 1,100.00 77.00
vasy_8082_42933 8,082,905 42,933,110 290 680 100.00 450.00 57.00
cwi_7838_59101 7,838,608 59,101,007 62,031 470,230 260.00 6,500.00 160.00
dining_14 18,378,370 164,329,284 228,486 2,067,856 730.00 2,000.00 490.00
cwi_33949_165318 33,949,609 165,318,222 12,463 71,466 620.00 5,600.00 500.00
1394-fin3 126,713,623 276,426,688 160,258 538,936 68,000.00 10,000.00 1,000.00
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Summary
É Vast improvement: O(m log n) instead of O(mn)
É Fast in practice
É Can also be used for branching bisimulation O(m(log |Act|+ log n))
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Future work
É Branching bisimulation in O(m log n)?

É Improve governed stuttering bisimulation for parity games (currently
O(mn2))

É Investigate impact on other relations such as orthogonal bisimulation
É Machine-checked proof of running time complexity?
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Thank you
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